Integration of assembly and fabrication for make-to-order production

نویسنده

  • R. Kolisch
چکیده

The problem of make-to-order production is as follows. A number of customer-speci"c orders have to be assembled in a multi-project type environment. Each order is made of di!erent assembly jobs which are interrelated by precedence constraints. To be processed, an assembly job requires in-house fabricated and out-house procured parts as well as capacity of assembly resources (assembly workers, power tools). Di!erent customer orders need the same part types and hence the fabrication of parts has to take into account lot sizing decisions. The overall problem is how to coordinate fabrication and assembly with respect to scarce capacities in the assembly and the fabrication such that the holdingand setup-cost of the entire supply chain } fabrication}assembly } are minimized. This problem has not been treated in the literature so far. Hence, we give a mixed}integer programming model for the problem and discuss its properties. Afterwards, we propose a simple, two-level backward oriented heuristic and evaluate it on a set of benchmark instances. ( 2000 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-objective Mixed Model Two-sided Assembly Line Sequencing Problem in a Make –To- Order Environment with Customer Order Prioritization

Mixed model two-sided assembly lines (MM2SAL) are applied to assemble large product models, which is produced in high-volume. So, the sequence planning of products to reduce cost and increase productivity in this kind of lines is imperative. The presented problem is tackled in two steps. In step 1, a framework is developed to select and prioritize customer orders under the finite capacity of th...

متن کامل

An improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling

Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...

متن کامل

A multi-objective genetic algorithm (MOGA) for hybrid flow shop scheduling problem with assembly operation

Scheduling for a two-stage production system is one of the most common problems in production management. In this production system, a number of products are produced and each product is assembled from a set of parts. The parts are produced in the first stage that is a fabrication stage and then they are assembled in the second stage that usually is an assembly stage. In this article, the first...

متن کامل

Solving a multi-objective mixed-model assembly line balancing and sequencing problem

This research addresses the mixed-model assembly line (MMAL) by considering various constraints. In MMALs, several types of products which their similarity is so high are made on an assembly line. As a consequence, it is possible to assemble and make several types of products simultaneously without spending any additional time. The proposed multi-objective model considers the balancing and sequ...

متن کامل

Multi-site production planning in hybrid make-to-stock/make-to-order production environment

Today competitive environment has enforced practitioners and researchers to pay great attention to issues enhancing both production and marketing competitiveness. To do so, it has been obligatory for the firms to consider production side activities while customer requirements are on the other side of competition. In this regard, hybrid make-to-stock (MTS)/make-to-order (MTO) production systems ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000